23. Januar 2024
Sensorik und KI-basierte Erkennung in der Pflege nutzen
Gleichgewichtsprobleme oder verminderte Reaktionsfähigkeit können dazu führen, dass pflegebedürftige Menschen aus ihrem Bett oder in dessen Nähe stürzen. Um solche Unfälle schneller zu entdecken, hat ein Team der TH Köln ein neues Messsystem entwickelt.

Das System kann Stürze anhand von Schwingungsmustern mit einer Wahrscheinlichkeit von 98 Prozent richtig erkennen, wie Laborversuche gezeigt haben. „Stürze stellen für Patient*innen in der Pflege eine große Gefahr dar. Sie ereignen sich häufig in der Nähe des Bettes und werden vom Pflegepersonal nicht immer sofort bemerkt. Dadurch kann es zu kurz- oder langfristigen gesundheitlichen Beeinträchtigungen kommen“, sagt Projektleiter Prof. Dr. Axel Wellendorf vom Institut für Allgemeinen Maschinenbau der TH Köln. Da eine permanente Beaufsichtigung der Patient*innen nicht möglich ist, müssen die Pflegekräfte möglichst schnell über Stürze benachrichtigt werden.
Daten erfasst und KI trainiert
Daher wurde im Forschungsprojekt „FallKI“ ein Messsystem entwickelt, das neben dem Bett platziert wird und Schwingungssensoren beinhaltet. „Das System nimmt mechanische Schwingungen auf und könnte diese künftig an eine zentrale Auswertungseinheit weitergeben, die dann darüber entscheidet, ob Alarm gegeben wird oder nicht. In unserem Projekt haben wir mit den gesammelten Daten zunächst eine Künstliche Intelligenz trainiert, die Stürze eindeutig erkennt“, berichtet der wissenschaftliche Mitarbeiter Leonard Klemenz.
Um eine ausreichend große und verwertbare Datenmenge zu haben, führte das Team über 1000 realitätsnahe Stürze mit einem Dummy aus. Dabei handelt es sich um eine 1,83 Meter große und 75 Kilogramm schwere Kunststoffpuppe, deren Gelenke und Gewichtsverteilung dem menschlichen Körper nachempfunden sind. Die Übertragbarkeit der Ergebnisse der Dummy-Versuche auf reale Personen mit unterschiedlicher Größe und Gewicht soll in Feldversuchen in Pflegeheimen nachgewiesen werden.
Stürze von anderen Vibrationen unterscheiden
„Jede Schwingung hat sozusagen einen individuellen Fingerabdruck. Ein Sturz wurde dem Algorithmus als ‚positives Ereignis‘ übermittelt. Das Fallenlassen einer Getränkeflasche oder einer Hantel wurde als ‚negatives Ereignis‘ erkannt. Wir haben Tests mit sieben Gegenständen durchgeführt. Des Weiteren haben wir die Schwingungsmuster von acht Ereignissen untersucht, zum Beispiel dem Zuschlagen einer Tür oder dem Verrücken von Möbeln. Am Ende der Versuchsreihe war die KI in der Lage, Stürze der Testpuppe von ‚negativen Ereignissen‘ mit einer Erfolgsquote von 98 Prozent richtig zu erkennen“, erklärt Wellendorf.
Die in den Versuchsreihen verwendete Labormesstechnik eignet sich jedoch nicht für den Dauereinsatz in einem Pflegeheim. Daher wurde dafür ein widerstandsfähiges und kostengünstiges Sensorsystem entwickelt. Dieses wurde in zwanzigfacher Ausführung gefertigt und über einen Zeitraum von sechs Monaten im Rahmen von Feldversuchen in einem Pflegeheim getestet – die erhobene Datenmenge war jedoch zu gering, um eine valide Aussage über einen erfolgreichen Einsatz in der Praxis treffen zu können. Die Forscherinnen und Forscher wollen den Prototyp des Sensorsystems und Projekten weiterentwickeln sowie in Realtests erproben.